
A 10-Step checklist for SOC teams



10 Step Detection Engineering Checklist  

Practical Advice Based on Field Experience 

Authors: Ophir Kelman & Yagel Yosef, Security Researchers at Hunters 

 

1 Start With Strategy: Define Purpose 
and Scope 

5 Differentiate SOC Rules  
vs. Threat Hunting Rules 

    

2 Build With the Right Tools and 
Technology 

6 Use Threat Prevalence  
to Guide Prioritization 

    

3 Prioritize Context-Rich Alerts 7 Leverage Analyst  
Feedback and Engagement 

    

4 Measure What Matters — KPIs 8 Commit to the Detection 
Engineering Lifecycle DELC 

 
 

9 Optimize for Performance and Cost 10 Manage Third-Party vs. Internal Rules 

    

    

 

 
 
 
 



 

1. Start With Strategy: Define Purpose and Scope 

Define the Detection Goal 

Understand the reason for building the detection: 

● Is it to expand existing attack surface coverage? 
 

● Is it addressing a newly discovered threat? 
 

● Are you trying to monitor for a tactic seen in recent threat intelligence? 
 

Key Learning No. 1 
Be mindful of the naive approach of checking every box in the MITRE matrix. Instead, each 
detection should be rooted in a clear and justified need. Without this clarity, the rule may not 
align with actual threats or gaps in coverage. 

Clarify Data Requirements 

● Identify what logs are required for detection 
 

● Also identify what logs are necessary for investigation (triage and deep dive) 
 

● Understand how your platform supports log access and query design 

Simulate Early 

Run simulations during creation: 

● Validate what the rule detects and what it misses 

Use this as a form of lightweight threat hunting to assess "noise versus signal" 
 
Key Learning No. 2 
A detection relying on whitelist maintenance will create a heavy burden on SOC analysts. If 
analysts must frequently update rule exclusions due to noise, the rule becomes a liability rather 
than an asset. 
 
 
 
 

 

   
 

 
2 

 



 

2. Build With the Right Tools and Technology 

Align With Platform Capabilities 

Determine whether your tech stack supports: 

● Joins 
 

● Time-series analysis 
 

● Machine learning models 
 

Caution: 
Some platforms don’t support joins, and others cannot apply advanced analytics. Know your 
tooling limits upfront so you don’t build detections that can't execute properly. 

Avoid Over-Reliance on Exclusions 

Rules with complex [NOT A AND NOT B AND NOT C] logic tend to accumulate noise and 
become unsustainable. 

Key Learning No. 3 
A rule built with heavy exclusion logic can become unmaintainable, leading to the decision to 
discard it entirely rather than chase noise indefinitely. 

3. Prioritize Context-Rich Alerts 

Provide Rule-Specific Context 

● Example: “This user typically doesn't request TGS with weak encryption” 
 

● Helps analysts focus by highlighting anomalies within familiar baselines 

 

Enrich With General Threat Intelligence 

● IP reputation, geolocation, ASN, and threat feeds add essential color to alerts 

 

 

 

   
 

 
3 

 



 

Ensure Context is Easily Accessible 

● Avoid requiring analysts to pivot across multiple tools 
 

● Embed context in the alert dashboard or ticket if possible 

Key Learning No. 4 
Analysts often fall into investigative “muscle memory,” skipping steps or dismissing real threats 
because the process becomes routine. Enriching alerts with high quality context disrupts that 
autopilot behavior and brings critical alerts into sharper focus. 

4. Measure What Matters — KPIs 

Signal-to-Noise Ratio (SNR) 

● Chronic noise = constant across environments 
 

● Acute noise = caused by localized or transient events 
 

Key Learning No. 5 
Security Researchers Ophir Kelman & Yagel Yosef noticed a detection became noisy only after 
a new service account was deployed. This shows the importance of monitoring for both chronic 
and environment-specific noise patterns. 

Silent Rules 

Monitor for rules that never fire: 

● Could be due to changes in log structure or logic errors 
 

● Might also be valid detections for rare events 
 

Caution: 

Silent rules often go unnoticed because most KPIs focus on noisy alerts. However, detection 
systems can silently fail if vendors alter log formats unexpectedly. 

 

 

 

 

   
 

 
4 

 



 

False Positives vs. Benign True Positives 

● False positives: Alert fires incorrectly 
 

● Benign TPs: Alert fires correctly, but activity is non-malicious 
 

Anecdote: 
A rule detected Mimikatz execution based on process name. If a file named mimikatz.docx 
triggered the rule, that would be a false positive. If a pentester actually ran Mimikatz during 
testing, it’s a benign TP. The challenge is in choosing whether to exclude or retain such cases. 

Key Learning No. 6 
Blindly excluding benign true positives (e.g., sysadmins doing weird things) can blind you to 
attacker activity that mimics the same behavior. 

5. Differentiate SOC Rules vs. Threat Hunting Rules 

SOC Rules 

● Should be low-noise, high-confidence 
 

● Designed for continuous monitoring and immediate triage 
 

Threat Hunting Rules 

● Can tolerate higher noise 
 

● Allow analysts to proactively explore weaker signals 
 

Key Learning No. 7 
Security Researchers Ophir Kelman & Yagel Yosef discovered a rule detecting internal network 
scanning was too noisy for SOC Queue/Alert Queue inclusion but proved effective in threat 
hunting. Treat such rules as auxiliary tools, not production-grade alerts. 

 
 
 

 

   
 

 
5 

 



 

6. Use Threat Prevalence to Guide Prioritization 

Evaluate Prevalence in the Wild 

● Use Microsoft’s telemetry data if available 
 

● Use quarterly threat reports from CrowdStrike, Check Point, Microsoft, etc. 
 

● Consider LLM tools (e.g., NotebookLM) to process and extract insight from multiple 
reports 
 

Key Learning No. 8 
Security Researchers Ophir Kelman & Yagel Yosef questioned a detection due to noise. Only 
after verifying that the tactic it targeted was widely used in the wild did the team decide to 
continue supporting and refining the rule. 

7. Leverage Analyst Feedback and Engagement 

Use the Case Management System 

● Export logs and look for high-frequency keywords like “false positive” 
 

● Identify detections with overly complex investigation flows 
 

Key Learning No. 9 
An internal tool flagged the most “clicked” alerts (engagement) in the SOC. By repeatedly 
refining these high-impact rules, the team in question became so efficient that they had to 
design a new monitoring approach. 

Detect Engagement Trends 

● Frequent dismissals suggest poor alert design 
 

● Rich context may improve alert stickiness and investigation depth 
 

 

 

 

   
 

 
6 

 



 

8. Commit to the Detection Engineering Lifecycle (DELC) 

Continuously Monitor and Improve 

● Maintain alerting for: 
 

○ Chronic and acute noise 
 

○ Rule silence 
 

○ High engagement but poor quality 
 

● Automate identification of rules that need tuning 
 

Key Learning No. 10 
A small SOC team working at a large organization created KPIs on their KPIs — 
‘meta-monitoring’ to validate that their SNR (signal-to-noise ratio) and engagement metrics were 
still providing value over time. 

Incorporate External Testing 

● Red team simulations 
 

● Penetration tests 
 

● User satisfaction metrics and feedback loops 
 

9. Optimize for Performance and Cost 

Query Efficiency Matters 

● Avoid unnecessary 90-day lookbacks. Start small (e.g., 7 days), and expand only if 
needed 
 

● Inefficient queries delay alerts and strain resources 
 

 

 

 

   
 

 
7 

 



 

Key Learning No. 11 
Slow-performing rules delayed alert generation. By the time SOC analysts working at a medium 
sized organization saw them, the threat had already progressed. Tightening the query window 
improved both performance and detection timing. 

Cost Monitoring 

● Heavy or frequent detections on cloud platforms can incur unexpected processing 
charges 

 

10. Manage Third-Party vs. Internal Rules 

Don’t Treat All Alerts Equally 

● Vendor-supplied rules may be noisy and offer little insight 
 

● Use vendor confidence scores to filter: 
 

○ Drop low-confidence alerts (e.g., below “medium”) 

Key Learning No. 12 
Third-party rules often fire excessively and lack flexibility. Setting confidence-based thresholds 
helped reduce clutter and preserved analyst focus. 

 

Final Thoughts 
Detection engineering is not static. It is a cyclical process of innovation, validation, 
measurement, and feedback. Teams that regularly review, refine, and revisit their rules will stay 
resilient against evolving threats. Hunters is an AI-Powered, Next-Gen SIEM for Small teams 
that want a sophisticated and streamlined approach to security operations. Using Hunters, 
SOC teams significantly enhance analyst efficiency and threat response accuracy. To find 
out how Hunters can help your lean SOC team, request a demo. 

Connect with the authors: Yagel Yosef & Ophir Kelman. 

 

   
 

 
8 

 

https://www.hunters.security/watch-a-demo-hunters-soc-platform
https://www.linkedin.com/in/yagel-yosef/
https://www.linkedin.com/in/ophir-kelman/

	Optimize for Performance and Cost 
	1. Start With Strategy: Define Purpose and Scope 
	Define the Detection Goal 
	Clarify Data Requirements 
	Simulate Early 

	2. Build With the Right Tools and Technology 
	Align With Platform Capabilities 
	Avoid Over-Reliance on Exclusions 

	3. Prioritize Context-Rich Alerts 
	Provide Rule-Specific Context 
	Enrich With General Threat Intelligence 
	Ensure Context is Easily Accessible 

	4. Measure What Matters — KPIs 
	Signal-to-Noise Ratio (SNR) 
	Silent Rules 
	False Positives vs. Benign True Positives 

	5. Differentiate SOC Rules vs. Threat Hunting Rules 
	SOC Rules 
	Threat Hunting Rules 

	 
	6. Use Threat Prevalence to Guide Prioritization 
	Evaluate Prevalence in the Wild 

	7. Leverage Analyst Feedback and Engagement 
	Use the Case Management System 
	Detect Engagement Trends 

	 
	8. Commit to the Detection Engineering Lifecycle (DELC) 
	Continuously Monitor and Improve 
	Incorporate External Testing 

	9. Optimize for Performance and Cost 
	Query Efficiency Matters 
	Cost Monitoring 

	10. Manage Third-Party vs. Internal Rules 
	Don’t Treat All Alerts Equally 

	Final Thoughts 


